
Week 10 - Friday



 What did we talk about last time?
 Finished time
 File I/O







The first 90% of the code accounts for the first 90% of the 
development time. The remaining 10% of the code 
accounts for the other 90% of the development time.

Tom Cargill







 Lots of errors can happen with file I/O
 If a file cannot be opened with the given mode, fopen()

returns NULL and errno is set to an appropriate error code
 The fprintf() function returns the number of characters 

written
 A value less than or equal to 0 indicates error

 The fscanf() function returns the number of items read
 If that number is less than expected, it's an error



 C programs that run on the command line have the following 
file pointers open by default
 stdin
 stdout
 stderr

 You can use them where you would use other file pointers



 You can think of the input and output functions you've been 
using as special cases of these file operations
 They are often implemented that way

 For example:
 getchar() is equivalent to fgetc(stdin)
 printf(…) is equivalent to fprintf(stdout,…)
 scanf(…) is equivalent to fscanf(stdin, …)





 Recall that each user on a Linux system has a unique login 
name and a unique numerical identifier (the UID)

 Users can belong to one or more groups as well
 Where is this information stored?



 The system has a password file stored in /etc/passwd
 Each line of this file corresponds to one user in the system and has 

seven fields separated by colons:
 Login name
 Encrypted password
 UID
 GID (group ID of the first group that the user is a member of)
 Comment
 Home directory (where you are when you log in)
 Login shell (which shell you running when you log in)

 Example:

wittman1:x:1000:100:Barry Wittman:/home/wittman1:/bin/bash



 Your computer needs to be able read the password file to 
check passwords

 But, even root shouldn’t be able to read everyone’s 
passwords

 Hash functions to the rescue!



 Takes a message of any 
size and turns it into a 
short, fixed-size digest

 Different from hash 
functions used for hash 
tables

 Lots of interesting 
properties (lots more than 
these):

• A small change in the message 
should make a big change in 
the digest

Avalanching

• Given a digest, should be hard 
to find a message that would 
produce it

Preimage
Resistance

• Should be hard to find two 
messages that hash to the 
same digest (collision)

Collision 
Resistance



 Instead of storing actual passwords, Linux machines store the 
hash of the passwords

 When someone logs on, the operating system hashes the 
password and compares it to the stored version

 No one gets to see your original password
 Not even root!



 Inside the password file, we have encrypted passwords
 Everyone's password is safe after all

Login Name Password Hash
ahmad IfW{6Soo
baili 853aE90f
carmen D390&063
deepak CWc^Q3Ge
erica e[6s_N*X1



 Even though the password is disguised, it's unwise to leave it 
visible to everyone
 Given a password digest (the hashed version) and lots of time, it is 

possible to figure out the password
 It's useful for the password file to be readable by everyone so 

that all users on a machine are known to all others
 A shadow password file stores the encrypted password and is 

readable only by privileged users
 /etc/shadow



 Amid all this discussion, it might be useful to know how to change 
your password

 I don't recommend that you do change your password
 I'm honestly not sure how doing so will interact with your Active Directory 

(Windows) password
 The command is passwd

Changing password for wittman1.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully



 You recall that we can change permissions for who can read, write, 
and execute a file using chmod

 But chmod depends on who the owner is
 What if you want someone else to be the owner of a file?
 The chown command can let you do that
 If I want my file stuff.txt to be owned by Professor Stucki, I 

would use the following command

 On most systems, chown only works if you are root

chown dstucki stuff.txt



 Files are associated with a group as well as a user who is owner
 The groups are listed in the /etc/group file
 Each line of this file corresponds to a group and has four fields separated by colons:
 Group name
 Encrypted password

▪ Often not used

 Group ID (GID)
 User list

▪ Comma separated

users:x:100:
jambit:x:106:claus,felli,frank,harti,markus,martin,mtk,paul



 If you want to create a group, you have to be root
 If you're root (or using sudo), you can use the groupadd

command
 To create the awesome group as root:

 Or using sudo:

groupadd awesome

sudo groupadd awesome



 Again, you have to be root to add a user to a group
 Use the useradd command
 To add user wittman1 to the awesome group as root:

 Or using sudo:

useradd –g awesome wittman1

sudo useradd –g awesome wittman1



 When you create a file, it is associated with some default 
group that you belong to

 You can use the chgrp command to change to another group 
that you belong to

 If you are root, you can use the chown command to change 
the group, using a colon

chgrp awesome file.txt

chown :awesome file.txt





 More on binary files
 Low-level I/O



 Work on Project 5
 Read LPI chapters 13, 14, and 15


	COMP 2400
	Last time
	Questions?
	Project 5 
	Quotes
	Exam 2 Post Mortem
	A Little More on File I/O
	Error handling
	Standard streams
	Aliases for other functions
	Users and Groups
	Users
	Password file
	Catch-22
	Cryptographic hash functions
	The Linux and Unix solution
	Back to the password file
	Shadow password file
	Changing your password
	Changing the owner of a file
	Groups
	Creating a group
	Adding a user to a group
	Changing the group for a file
	Upcoming
	Next time…
	Reminders

