
Week 10 - Friday



 What did we talk about last time?
 Finished time
 File I/O







The first 90% of the code accounts for the first 90% of the 
development time. The remaining 10% of the code 
accounts for the other 90% of the development time.

Tom Cargill







 Lots of errors can happen with file I/O
 If a file cannot be opened with the given mode, fopen()

returns NULL and errno is set to an appropriate error code
 The fprintf() function returns the number of characters 

written
 A value less than or equal to 0 indicates error

 The fscanf() function returns the number of items read
 If that number is less than expected, it's an error



 C programs that run on the command line have the following 
file pointers open by default
 stdin
 stdout
 stderr

 You can use them where you would use other file pointers



 You can think of the input and output functions you've been 
using as special cases of these file operations
 They are often implemented that way

 For example:
 getchar() is equivalent to fgetc(stdin)
 printf(…) is equivalent to fprintf(stdout,…)
 scanf(…) is equivalent to fscanf(stdin, …)





 Recall that each user on a Linux system has a unique login 
name and a unique numerical identifier (the UID)

 Users can belong to one or more groups as well
 Where is this information stored?



 The system has a password file stored in /etc/passwd
 Each line of this file corresponds to one user in the system and has 

seven fields separated by colons:
 Login name
 Encrypted password
 UID
 GID (group ID of the first group that the user is a member of)
 Comment
 Home directory (where you are when you log in)
 Login shell (which shell you running when you log in)

 Example:

wittman1:x:1000:100:Barry Wittman:/home/wittman1:/bin/bash



 Your computer needs to be able read the password file to 
check passwords

 But, even root shouldn’t be able to read everyone’s 
passwords

 Hash functions to the rescue!



 Takes a message of any 
size and turns it into a 
short, fixed-size digest

 Different from hash 
functions used for hash 
tables

 Lots of interesting 
properties (lots more than 
these):

• A small change in the message 
should make a big change in 
the digest

Avalanching

• Given a digest, should be hard 
to find a message that would 
produce it

Preimage
Resistance

• Should be hard to find two 
messages that hash to the 
same digest (collision)

Collision 
Resistance



 Instead of storing actual passwords, Linux machines store the 
hash of the passwords

 When someone logs on, the operating system hashes the 
password and compares it to the stored version

 No one gets to see your original password
 Not even root!



 Inside the password file, we have encrypted passwords
 Everyone's password is safe after all

Login Name Password Hash
ahmad IfW{6Soo
baili 853aE90f
carmen D390&063
deepak CWc^Q3Ge
erica e[6s_N*X1



 Even though the password is disguised, it's unwise to leave it 
visible to everyone
 Given a password digest (the hashed version) and lots of time, it is 

possible to figure out the password
 It's useful for the password file to be readable by everyone so 

that all users on a machine are known to all others
 A shadow password file stores the encrypted password and is 

readable only by privileged users
 /etc/shadow



 Amid all this discussion, it might be useful to know how to change 
your password

 I don't recommend that you do change your password
 I'm honestly not sure how doing so will interact with your Active Directory 

(Windows) password
 The command is passwd

Changing password for wittman1.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully



 You recall that we can change permissions for who can read, write, 
and execute a file using chmod

 But chmod depends on who the owner is
 What if you want someone else to be the owner of a file?
 The chown command can let you do that
 If I want my file stuff.txt to be owned by Professor Stucki, I 

would use the following command

 On most systems, chown only works if you are root

chown dstucki stuff.txt



 Files are associated with a group as well as a user who is owner
 The groups are listed in the /etc/group file
 Each line of this file corresponds to a group and has four fields separated by colons:
 Group name
 Encrypted password

▪ Often not used

 Group ID (GID)
 User list

▪ Comma separated

users:x:100:
jambit:x:106:claus,felli,frank,harti,markus,martin,mtk,paul



 If you want to create a group, you have to be root
 If you're root (or using sudo), you can use the groupadd

command
 To create the awesome group as root:

 Or using sudo:

groupadd awesome

sudo groupadd awesome



 Again, you have to be root to add a user to a group
 Use the useradd command
 To add user wittman1 to the awesome group as root:

 Or using sudo:

useradd –g awesome wittman1

sudo useradd –g awesome wittman1



 When you create a file, it is associated with some default 
group that you belong to

 You can use the chgrp command to change to another group 
that you belong to

 If you are root, you can use the chown command to change 
the group, using a colon

chgrp awesome file.txt

chown :awesome file.txt





 More on binary files
 Low-level I/O



 Work on Project 5
 Read LPI chapters 13, 14, and 15


	COMP 2400
	Last time
	Questions?
	Project 5 
	Quotes
	Exam 2 Post Mortem
	A Little More on File I/O
	Error handling
	Standard streams
	Aliases for other functions
	Users and Groups
	Users
	Password file
	Catch-22
	Cryptographic hash functions
	The Linux and Unix solution
	Back to the password file
	Shadow password file
	Changing your password
	Changing the owner of a file
	Groups
	Creating a group
	Adding a user to a group
	Changing the group for a file
	Upcoming
	Next time…
	Reminders

